Find the tangent to the curve y=x^3+3 at the point x=1.

  • Google+ icon
  • LinkedIn icon

1. Differentiate the Equation of the curve to find the gradient: y'=3x^2

2. The gradient of the tangent is found by substituting x=1 into y'=3x^2: Gradient of tangent=3

3. Now we must find out the co-ordinates of the point. These are (x=1y=1^3+3) = (1,4).

4. Now to find out the equation of the tangent, substitute x=1, y=4 and m=3 into y=mx+c to get c=1, (the y-intercept)

5. This gives the tangential equation as y=3x+1.

Sevenia K. A Level Maths tutor, GCSE Maths tutor, A Level Physics tut...

About the author

is an online A Level Maths tutor with MyTutor studying at Warwick University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss