Find the tangent to the curve y=x^3+3 at the point x=1.

1. Differentiate the Equation of the curve to find the gradient: y'=3x^2

2. The gradient of the tangent is found by substituting x=1 into y'=3x^2: Gradient of tangent=3

3. Now we must find out the co-ordinates of the point. These are (x=1y=1^3+3) = (1,4).

4. Now to find out the equation of the tangent, substitute x=1, y=4 and m=3 into y=mx+c to get c=1, (the y-intercept)

5. This gives the tangential equation as y=3x+1.

SK
Answered by Sevenia K. Maths tutor

4514 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


(ii) Prove by induction that, for all positive integers n, f(n) = 3^(3n–2) + 2^(3n+1) is divisible by 19


Find INT{2,1}{x^4 + 3x^2 + 2}


What is the "chain rule"?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning