Find the tangent to the curve y=x^3+3 at the point x=1.

1. Differentiate the Equation of the curve to find the gradient: y'=3x^2

2. The gradient of the tangent is found by substituting x=1 into y'=3x^2: Gradient of tangent=3

3. Now we must find out the co-ordinates of the point. These are (x=1y=1^3+3) = (1,4).

4. Now to find out the equation of the tangent, substitute x=1, y=4 and m=3 into y=mx+c to get c=1, (the y-intercept)

5. This gives the tangential equation as y=3x+1.

SK
Answered by Sevenia K. Maths tutor

4155 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.


If y=(a^(Sinx)) where a and k are given constants, find dy/dx in terms of a and x


Find the derivative of x(x+3)^5


y = (x^2)sin(3x). Find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences