Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).

Differentiating the equation for x with respect to t, we get: dx/dt=2Sqrt(3)cos(2t);Take the reciprocal of dx/dt to get dt/dx=1/[2Sqrt(3)cos(2t)]Using a trigonometric identity on the equation for y, we get: y=2[1+cos(2t)];Differentiating the equation for y with respect to t, we get: dy/dt=-4sin(2t);Multiply dy/dt and dt/dx gives: dy/dx=-2/3 Sqrt(3)tan(2t).From the question we are asked to find k.Therefore, k=-2/3

PC
Answered by Peter C. Maths tutor

4670 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of arctan(x)


A particle, P, moves along the x-axis. At time t seconds, t > 0, the displacement, is given by x=1/2t^2(t ^2−2t+1).


The polynomial p(x) is, p(x)= x3-5x2-8x+48.Use the Factor Theorem to show that (x + 3)is a factor of p(X)


Find the equation of the normal to the curve at the point (1, -1 ): 10yx^2 + 6x - 2y + 3 = x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning