Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).

Differentiating the equation for x with respect to t, we get: dx/dt=2Sqrt(3)cos(2t);Take the reciprocal of dx/dt to get dt/dx=1/[2Sqrt(3)cos(2t)]Using a trigonometric identity on the equation for y, we get: y=2[1+cos(2t)];Differentiating the equation for y with respect to t, we get: dy/dt=-4sin(2t);Multiply dy/dt and dt/dx gives: dy/dx=-2/3 Sqrt(3)tan(2t).From the question we are asked to find k.Therefore, k=-2/3

PC
Answered by Peter C. Maths tutor

4993 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = (x-5)/(x^2+5x+4), express this in partial fractions and hence find the integral of f(x) dx between x=0 and x=2, giving the answer as a single simplified logarithm.


How would you determine what sort of stationary point this curve has? x^3 - 6x^2 + 9x - 4


Find CO-Ordinates of intersection of 2x+3y=12 and y=7-3x


The line l1 has equation 4y - 3x = 10. Line l2 passes through points (5, -1) and (-1, 8). Determine whether the lines l1 and l2 are parallel, perpendicular or neither.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning