Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).

Differentiating the equation for x with respect to t, we get: dx/dt=2Sqrt(3)cos(2t);Take the reciprocal of dx/dt to get dt/dx=1/[2Sqrt(3)cos(2t)]Using a trigonometric identity on the equation for y, we get: y=2[1+cos(2t)];Differentiating the equation for y with respect to t, we get: dy/dt=-4sin(2t);Multiply dy/dt and dt/dx gives: dy/dx=-2/3 Sqrt(3)tan(2t).From the question we are asked to find k.Therefore, k=-2/3

PC
Answered by Peter C. Maths tutor

4727 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


How would I answer this question? Use factor theorem to show (x-2) is a factor of f(x) = 2x^3 -7x^2 +4x +4.


A spherical balloon of radius r cm has volume Vcm^3 , where V =4/3 * pi * r^3. The balloon is inflated at a constant rate of 10 cm^3 s^-1 . Find the rate of increase of r when r = 8.


How do I differentiate 4x^3 + 2x + x^4 with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning