Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).

Differentiating the equation for x with respect to t, we get: dx/dt=2Sqrt(3)cos(2t);Take the reciprocal of dx/dt to get dt/dx=1/[2Sqrt(3)cos(2t)]Using a trigonometric identity on the equation for y, we get: y=2[1+cos(2t)];Differentiating the equation for y with respect to t, we get: dy/dt=-4sin(2t);Multiply dy/dt and dt/dx gives: dy/dx=-2/3 Sqrt(3)tan(2t).From the question we are asked to find k.Therefore, k=-2/3

PC
Answered by Peter C. Maths tutor

4803 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can we remember the difference between differentiation and integration?


i) differentiate xcos2x with respect to x ii) integrate xcos2x with respect to x


Find the gradient of the function f(x,y)=x^3 + y^3 -3xy at the point (2,1), given that f(2,1) = 6.


Differentiate 3x^(2)+xy+y^(2)=12 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning