Given: 𝑓(π‘₯) = π‘Žπ‘₯^3 + 𝑏π‘₯^2 βˆ’ 3 and 𝑓"(βˆ’2) = 0. If it is further given that the point (βˆ’3; 6) lies on the graph of 𝑓. Show that π‘Ž = 1/3 and 𝑏 = 2.

We start off by finding the first derivative of equation f(x) = ax3 + bx2 - 3: f'(x) = 3ax2 + 2bx. We now take the second derivative of equation f, because we have been told that f"(-2) = 0: f"(x) = 6ax + 2b (1). We know that with an x value of -2, equation (1) is equal to 0: f"(-2) = 6a(-2) + 2b = 0-12a +2b = 0 (2). This equation will be used later to find the final answer. We also know that the pointΒ (βˆ’3; 6) lies on the graph of 𝑓. Therefore, for an x value of -3, f(x) equals 6: f(-3) = a(-3)2 + b(-3)2 - 3 = 6-27a + 9b = 9 (3). We then solve equations (2) and (3) simultaneously, as we have two unknowns and two equations, and reach the following answer: a = 1/3 ; b = 2. This question would be worth a total of 6 points.

NL
Answered by Neil L. β€’ Maths tutor

2857 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers β–Έ

Solve this pair of simultaneous equations (1) 5x+2y=20 and (2) x+4y=13


In a recent election, 42% of the voters were male. There were 400 more female voters than male voters. Assuming all voters are either male or female, how many voters were there overall?


Rationalise the denominator of 2/(3-sqrt(2)).


solve: x^2= 4(x-3)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

Β© 2026 by IXL Learning