Solve the simultaneous equations: 5x + y = 21, x - 3y = 9

Call '5x + y = 21' equation 1 and 'x - 3y = 9' equation 2. To solve this, we need the coefficients of x in both equations to be the same or the coefficients of y in both equations to be the same.
Method 1 - solving for y firstMultiply equation 2 by 5 to get:5x - 15y = 45 (call this equation 3)Now we are going to take equation 1 away from equation 3: 5x - 15y = 45 - 5x + y = 21 which becomes: -16y=24Solve for y:y=-24/16 =-3/2Sub this value into equation 1 to solve for x:5x + (-3/2) = 215x = 45/2x= 9/2

BI
Answered by Basil I. Maths tutor

4294 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do i solve the quadratic x^2 + 5x + 6 = 0 ?


If L1 is y = 3x + 15 and L2 is 3y + 20 = 9x show whether or not L1 and L2 are parallel.


Expand 3(5a-2)


When given an equation with both letters and numbers on each side of the equals sign, for instance 4x +3 = 5x - 3, how do you know what to do first?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences