Solve the simultaneous equations: 5x + y = 21, x - 3y = 9

Call '5x + y = 21' equation 1 and 'x - 3y = 9' equation 2. To solve this, we need the coefficients of x in both equations to be the same or the coefficients of y in both equations to be the same.
Method 1 - solving for y firstMultiply equation 2 by 5 to get:5x - 15y = 45 (call this equation 3)Now we are going to take equation 1 away from equation 3: 5x - 15y = 45 - 5x + y = 21 which becomes: -16y=24Solve for y:y=-24/16 =-3/2Sub this value into equation 1 to solve for x:5x + (-3/2) = 215x = 45/2x= 9/2

BI
Answered by Basil I. Maths tutor

4331 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How should I calculate the values of a and b when a(4x+12) is equivalent to 2x+36b?


For the equation 7x+3y=10x/y make x the subject.


The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a.


An object's displacement, s metres, from a fixed point after t seconds is s=5t^3+t^2. Find expressions for the object's velocity and acceleration at time t seconds.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences