Solve the simultaneous equations: 5x + y = 21, x - 3y = 9

Call '5x + y = 21' equation 1 and 'x - 3y = 9' equation 2. To solve this, we need the coefficients of x in both equations to be the same or the coefficients of y in both equations to be the same.
Method 1 - solving for y firstMultiply equation 2 by 5 to get:5x - 15y = 45 (call this equation 3)Now we are going to take equation 1 away from equation 3: 5x - 15y = 45 - 5x + y = 21 which becomes: -16y=24Solve for y:y=-24/16 =-3/2Sub this value into equation 1 to solve for x:5x + (-3/2) = 215x = 45/2x= 9/2

BI
Answered by Basil I. Maths tutor

4648 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

a=7 and b=2, Work out the value of (a/b)-a^b


Bob earns £7.70 an hour, and he works 30 hours per week. If Bob has 28 days of unpaid holidays to take, how much does he earn in a year? Also will he be taxed? (Bob will be taxed if he earns over £10000 in one year)


Solve 4x - 6 < 2x + 5


Expand (x-5)(2x-3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning