The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) The straight line L2 passes through the origin and has gradient -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.

First, find equations for the 2 lines in the standard cartesian form y=mx+c:L1: To find gradient = dy/dx = change in y/change in x = (y2-y1)/(x2-x1) = (2-6)/(12-4) = -4/8 = -0.5 = m To find intercept use gradient and one of the points: 6 = -0.54 + c -> c=6+2=8 y=-0.5x+8L2: y=-3xEquate the 2 lines to find the x-coordinate of P: -3x=-0.5x+8 -> -2.5x = 8 -> x = -8/2.5 = -3.2 -> y=-3-3.2 = 9.6P has coordinates (-3.2,9.6)

HF
Answered by Hugo F. Maths tutor

4253 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

x^2 - y = 14, y - 2 = 6x, solve these equations simultaneously


3/5 of a number is 162. What is that number?


You are given a sequence of numbers: -2, 12, 32, 58, 90, ... Work out the 7th term in this sequence.


How do you find the equation of a circle?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences