A ball is kicked and has an instantaneous velocity of 19.6m/s at an angle of 30 degrees to the horizontal. A target lies flat on the ground in the direction the ball is kicked and lies at a distance of (98/5)*(3^1/2)m. Does the ball land on the target?

First assume air resistance is negligible.Draw a diagram for the problem, this makes picturing it a lot easier.Next calculate the horizontal and vertical velocity of the ball. With the aid of a diagram and trigonometry (SOHCAHTOA) the vertical speed is found to be 19.6sin(30) and the horizontal 19.6cos(30).Now use SUVAT to find the time that the ball is in the air.At the top of the arc the ball makes, it has a vertical velocity of 0. Therefore I can use v=u+at to find my time from launch to peak. This gives t = 1s (rearranging gives t = u/a, t = 19.6sin(30) / 9.8) Due to symmetry this can be doubled to give the total time the ball is airbourne. T(total) = 2s.Using this we can calculate the horizontal distance the ball travels whilst in the air. Use the equation distance = speed x time.Time = 2s, horizontal speed = 19.6cos(30). Therefore distance = 19.6*cos(30)*2. using a calculator or a 'magic' triangle this is seen to be equivalent to (98/5)*31/2.Yes, the ball hits the target.

AS
Answered by Alexander S. Maths tutor

3033 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the double angle formulae and the identity cos(A+B)≡cos(A)cos(B)−sin(A)sin(B) to obtain an expression for cos 3x in terms of cos x only


The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?


Find all values of x in the interval 0 ≤ x ≤ 2pi for 2sin(x)tan(x)=3


Find the equation of the tangent of the curve y = (8x)/(x-8) at the point (0,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning