Solve: x^2 – x – 12 = 0

Method 1: Solve by inspection.
Demonstrate that quadratic equations can often be written in the form (x+a)(a+b) = 0. Explain that possible solutions arise as a result of either (x+a) or (x+b) =0. Note that ab = -12 , and a+b = -1 (the coefficient of the x term). Through solving these simultaneous equations or simple inspection we conclude that:a = -4, b = +3. We then substitute these values into our original form: (x+a)(a+b) = 0 , concluding that x must equal 4, -3.
Method 2: Use the quadratic formula (-b+-(√b^2-4ac) ) / 2a.
Substituting a = 1, b = -1, c= -12 we arrive at the answer x = 4,-3.

NA
Answered by Nikesh A. Maths tutor

2784 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Billy wants to buy 10kg of the same oranges. Type A comes in bags of 1.25 kg and costs £1.50. Type B comes in bags of 5kg and used to cost £6.60 but are now 15% off. Which type is more worth it for Billy and how much does it cost?


Can you solve these simultaneous equations and find the values of x and y? Equation 1: 2x + y = 14 Equation 2: 4x - y = 10.


Solve for y: 5(y – 2) + 2(y – 3) = 19


P has coordinates (0, -1) and Q has coordinates (4, 1). a) Find the equation of line PQ. b) P and Q are two vertices of rectangle PQRS. Find the equation of line QR.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning