Solve: x^2 – x – 12 = 0

Method 1: Solve by inspection.
Demonstrate that quadratic equations can often be written in the form (x+a)(a+b) = 0. Explain that possible solutions arise as a result of either (x+a) or (x+b) =0. Note that ab = -12 , and a+b = -1 (the coefficient of the x term). Through solving these simultaneous equations or simple inspection we conclude that:a = -4, b = +3. We then substitute these values into our original form: (x+a)(a+b) = 0 , concluding that x must equal 4, -3.
Method 2: Use the quadratic formula (-b+-(√b^2-4ac) ) / 2a.
Substituting a = 1, b = -1, c= -12 we arrive at the answer x = 4,-3.

NA
Answered by Nikesh A. Maths tutor

2581 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations y=x-5 and 10y=2x+6 by elimination, and by substitution.


How do you work out the nth term for a linear equation?


Q: How to solve the simultaneous equations 3x+2y=7 and 5x+y=14


Given y=x^3+5x+3 find dy/dx when x=3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences