Differentiate y=(4x^2-1)^3

When differentiating a composite function y = (4x2-1)3 , the chain rule needs to be used.
The chain rule is dy/dx= dy/du x du/dx
In this instance we need to assign u and y in order to differentiate and get the expression for dy/dx.
We can assign u to what is in the bracket. u = 4x2 -1 . Therefore y = u3So du/dx= 8x and dy/du = 3u2 When we substitute this back into the original chain rule, we get dy/dx = 3u2 x 8xWe already have the u, which is =4x2 -1
Therefore, putting this together gets dy/dx= 3(4x2 -1)2 x 8x = 24x(4x2-1)2.


Answered by Maths tutor

4510 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate (2x+1) / (3x^2 - 5)?


Express 4 sin(x) – 8 cos(x) in the form R sin(x-a), where R and a are constants, R >0 and 0< a< π/2


I am struggling understanding how to differentiate negative indices. I get confused with the power increasing or decreasing.


Differentiate, with respect to x, e^3x + ln 2x,


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning