Differentiate y=(4x^2-1)^3

When differentiating a composite function y = (4x2-1)3 , the chain rule needs to be used.
The chain rule is dy/dx= dy/du x du/dx
In this instance we need to assign u and y in order to differentiate and get the expression for dy/dx.
We can assign u to what is in the bracket. u = 4x2 -1 . Therefore y = u3So du/dx= 8x and dy/du = 3u2 When we substitute this back into the original chain rule, we get dy/dx = 3u2 x 8xWe already have the u, which is =4x2 -1
Therefore, putting this together gets dy/dx= 3(4x2 -1)2 x 8x = 24x(4x2-1)2.


Answered by Maths tutor

4061 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x)=xln(x)-x. Find f'(x). Hence or otherwise, evaluate the integral of ln(x^3) between 1 and e.


if f(x) = 7x-1 and g(x) = 4/(x-2), solve fg(x) = x


1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


How to solve a quadratic equation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences