Why does ln(x) differentiate to 1/x ?

At first glance, this may seem quite complicated. However, it is simple once you make use of exponents. 
Let y=ln(x)
This can be written as: e= eln(x)
e to the power of a natural log cancels out, which gives: 
ey=x
Differentiating both sides with respect to x gives:
ey (dy/dx)=1 
[This uses implicit differentiation. Remember that you must multiply ey by dy/dx as there isn't an x on that side]
Substituting in ey=x gives:
x (dy/dx) =1
And so dy/dx = 1/x

CE
Answered by Charlie E. Maths tutor

14725 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I go about finding the coordinates minimum point on the curve eg y = e^(x) - 9x -5?


Using the parametric equations x=6*4^t-2 and y=3*(4^(-t))-2, Find the Cartesian equation of the curve in the form xy+ax+by=c


Using partial fractions, find f(x) if f'(x)=5/(2x-1)(x-3)


Given that z = sin(x)/cos(x), use the quoitent rule to show that dZ/dx = sec^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning