Why does ln(x) differentiate to 1/x ?

At first glance, this may seem quite complicated. However, it is simple once you make use of exponents. 
Let y=ln(x)
This can be written as: e= eln(x)
e to the power of a natural log cancels out, which gives: 
ey=x
Differentiating both sides with respect to x gives:
ey (dy/dx)=1 
[This uses implicit differentiation. Remember that you must multiply ey by dy/dx as there isn't an x on that side]
Substituting in ey=x gives:
x (dy/dx) =1
And so dy/dx = 1/x

CE
Answered by Charlie E. Maths tutor

14013 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that 2(1-cos(x)) = 3sin^2(x) can be written as 3cos^2(x)-2cos(x)-1=0.


How do I find where the stationary points of a function are?


The line AB has equation 3x + 5y = 7. Find the gradient of line AB.


Differentiate 2e^(3x^2+6x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences