Why does ln(x) differentiate to 1/x ?

At first glance, this may seem quite complicated. However, it is simple once you make use of exponents. 
Let y=ln(x)
This can be written as: e= eln(x)
e to the power of a natural log cancels out, which gives: 
ey=x
Differentiating both sides with respect to x gives:
ey (dy/dx)=1 
[This uses implicit differentiation. Remember that you must multiply ey by dy/dx as there isn't an x on that side]
Substituting in ey=x gives:
x (dy/dx) =1
And so dy/dx = 1/x

CE
Answered by Charlie E. Maths tutor

14197 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the line y=x^2-4x+3. Be sure to clearly show all the points where the line crosses the coordinate axis and the stationary points


Simplify: 4log2 (3) + 2log2(5)


Given that y = 16x + 1/x , find the two values of x for which dy/dx = 0


Find the coordinates of the stationary point on the curve y=2x^2+3x+4=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences