Why does ln(x) differentiate to 1/x ?

At first glance, this may seem quite complicated. However, it is simple once you make use of exponents. 
Let y=ln(x)
This can be written as: e= eln(x)
e to the power of a natural log cancels out, which gives: 
ey=x
Differentiating both sides with respect to x gives:
ey (dy/dx)=1 
[This uses implicit differentiation. Remember that you must multiply ey by dy/dx as there isn't an x on that side]
Substituting in ey=x gives:
x (dy/dx) =1
And so dy/dx = 1/x

CE
Answered by Charlie E. Maths tutor

14716 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If we have a vector 4x + 6y + z and another vector 3x +11y + 2z then what is the angle between the two?Give the answer in radians


Express: (x^2 + 5x - 14) / (2x^2 - 4x) as a fraction in it's simplest form.


The functions f and g are defined by f : x → 2x + ln 2, g : x → e^(2x). Find the composite function gf, sketch its graph and find its range.


I don’t think I’m smart enough for this course, should I drop it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning