Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants

Given a ODE of the 2nd order, Ay''+by'+cy = 0, we assume the general solution of the exponential form y=e^(mx).As we will see this leads to an easy simplification due to the properties of the exponential . From this we substitute in and we get Am^(2)(e^mx) +bm(e^mx) + c(e^mx) = 0 here we have a like term of e^mx and thus can be eliminated leaving a quadratic of the form Am^2 + Bm + C = 0 where for a particular ODE we can solve quadratically and will have two values of m for a well-defined solution of the ODE.

WP
Answered by William P. Maths tutor

2589 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244


Find all solutions of the equation in the interval [0, 2π]. 5 cos^3 x = 5 cos x


Use the substitution u=2+ln(t) to find the exact value of the antiderivative of 1/(t(2+ln(t))^2)dt between e and 1.


dx/dt=-5x/2 t>=0 when x=60 t=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning