Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants

Given a ODE of the 2nd order, Ay''+by'+cy = 0, we assume the general solution of the exponential form y=e^(mx).As we will see this leads to an easy simplification due to the properties of the exponential . From this we substitute in and we get Am^(2)(e^mx) +bm(e^mx) + c(e^mx) = 0 here we have a like term of e^mx and thus can be eliminated leaving a quadratic of the form Am^2 + Bm + C = 0 where for a particular ODE we can solve quadratically and will have two values of m for a well-defined solution of the ODE.

WP
Answered by William P. Maths tutor

2733 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle is placed on a rough plane which is inclined to the horizontal at an angle θ, where tanθ =4/3, and released from rest. The coefficient of friction between the particle and the plane is 1/3. Find the particle's acceleration.


What is the difference between a definite integral and an indefinite integral?


Factorise completely x-4x^3


Solve the equation 3sin^2(x) + sin(x) + 8 = 9cos^2(x), -180<X<180. Then find smallest positive solution of 3sin^2(2O-30) + sin(2O-30) + 8 = 9cos^2(2O-30).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning