Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants

Given a ODE of the 2nd order, Ay''+by'+cy = 0, we assume the general solution of the exponential form y=e^(mx).As we will see this leads to an easy simplification due to the properties of the exponential . From this we substitute in and we get Am^(2)(e^mx) +bm(e^mx) + c(e^mx) = 0 here we have a like term of e^mx and thus can be eliminated leaving a quadratic of the form Am^2 + Bm + C = 0 where for a particular ODE we can solve quadratically and will have two values of m for a well-defined solution of the ODE.

WP
Answered by William P. Maths tutor

2332 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the Total Area between the curve x^3 -3x^2 +2x and the x-axis, when 0 ≤ x ≤ 2.


Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0


Differentiate 4(x^3) + 3x + 2 with respect to x


What is the integral of ln(x)? Hint: use parts for this integration


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences