Prove that n is a prime number greater than 5 then n^4 has final digit 1

Last digit of n determines last digit of n^4. All even numbers divide by 2, so are not prime. Any number ending in 5 is a multiple of 5 so is not prime. Primes > 5 end in 1, 3, 7 or 9. If n ends in 1, 1^4 is 1 so n^4 ends in a 1. If n ends in 3, 3^4 is 81 so n^4 ends in a 1. If n ends in 7, 7^4 is 2401 so n^4 ends in a 1. If n ends in 9, 9 4 is 6561 so n^4 ends in a 1. Statement proved by exhaustion 

AP
Answered by Aristomenis-Dionysios P. Maths tutor

11300 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where does the quadratic formulae come from?


How would I differentiate a function of the form y=(f(x))^n?


The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


The line y = (a^2)x and the curve y = x(b − x)^2, where 0<a<b , intersect at the origin O and at points P and Q. Find the coordinates of P and Q, where P<Q, and sketch the line and the curve on the same axes. Find the tangent at the point P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning