Prove that n is a prime number greater than 5 then n^4 has final digit 1

Last digit of n determines last digit of n^4. All even numbers divide by 2, so are not prime. Any number ending in 5 is a multiple of 5 so is not prime. Primes > 5 end in 1, 3, 7 or 9. If n ends in 1, 1^4 is 1 so n^4 ends in a 1. If n ends in 3, 3^4 is 81 so n^4 ends in a 1. If n ends in 7, 7^4 is 2401 so n^4 ends in a 1. If n ends in 9, 9 4 is 6561 so n^4 ends in a 1. Statement proved by exhaustion 

AP
Answered by Aristomenis-Dionysios P. Maths tutor

11668 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The volume, V, of water in a tank at time t seconds is given by V = 1/3*t^6 - 2*t^4 + 3*t^2, for t=>0. (i) Find dV/dt


Find the derivative of f(x)=x^2log(2x)


A particle of mass 0.25 kg is moving with velocity (3i + 7j) m s–1, when it receives the impulse (5i – 3j) N s. Find the speed of the particle immediately after the impulse.


Find (dy/dx) of x^3 - x + y^3 = 6 + 2y^2 in terms of x and y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning