Prove that n is a prime number greater than 5 then n^4 has final digit 1

Last digit of n determines last digit of n^4. All even numbers divide by 2, so are not prime. Any number ending in 5 is a multiple of 5 so is not prime. Primes > 5 end in 1, 3, 7 or 9. If n ends in 1, 1^4 is 1 so n^4 ends in a 1. If n ends in 3, 3^4 is 81 so n^4 ends in a 1. If n ends in 7, 7^4 is 2401 so n^4 ends in a 1. If n ends in 9, 9 4 is 6561 so n^4 ends in a 1. Statement proved by exhaustion 

AP
Answered by Aristomenis-Dionysios P. Maths tutor

10610 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a parametric equation?


Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


Determine whether the line with equation 2x+ 3y + 4 = 0 is parallel to the line through the points with coordinates (9, 4) and (3, 8).


Find the value of cot(π/3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences