Nitrous acid, HNO2, is a weak Bronsted-Lowry acid with a Ka value of 4.43x10-4 mol dm-3. Calculate the pH of 0.375 mol dm-3 of HNO2.

We know how to calculate pH from H+ concentration with the equation : pH = -log10[H+] So, we need to work out the concentration of H+ ions in 0.375 mol dm-3 of nitrous acid, HNO2. We're given the Ka value, so we should write out the expression for the acid dissociation constant Ka : Ka = ([H+][NO2-])/[HNO2] We assume that for every H+ ion there is one NO2- ion. Therefore ([H+][NO2-]) can be written as [H+]2. Rearranging for [H+] and subbing in values we get this : [H+] = sqrt ( Ka x [HNO2] ) = sqrt (4.43 x 10-4 x 0.375) = 0.0128889 mol dm-3 Finally we sub this into the equation for pH : pH = -log10(0.0128889) = 1.89 (to two decimal places)

Answered by Chemistry tutor

13486 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Describe the enthalpy change of formation of butane.


Calculate the amount (in moles) of iron 3 nitrate in a 2.16g sample.


Why is phenol more reactive than benzene?


Predict the number of peaks in a carbon-13 NMR spectrum of the following carbonyl isomers of C5H8O. (i) CH3CH2CH2CH2CHO (ii) (CH3)3CCHO (iii) CH3COCH(CH3)2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning