The Volume of a tin of radius r cm is given by V=pi*(40r-r^2-r^3). Find the positive value of r for which dV/dr=0 and find the value of V for this r.

Firstly differentiate the function V with respect to x (dV/dx)=pi*(40-2r-3r^2). Set dV/dr =0 and solve to find r. Divide both sides by pi and divide both side by -1 so that the r^2 term is positive (I personally find it easier to solve when the highest power coefficient is positive) (3r^2+2r-40=0). Factorise this expression ((3r-10)(r+4)=0). From this you can deduce the two values of x for which dV/dx=0 (r=10/3 and r =-4). Lastly substitute the positive value of r (10/3) into the expression for V (V=pi*(40-2(10/3)-3(10/3)^2)) = (2300*pi)/27.

CK
Answered by Chorley K. Maths tutor

4208 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


How do we know which formulas we need to learn for the exam?


Find the integral of (sinxcos^2x) dx


Find the first differential with respect to x of y=tan(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences