For a graph C with equation y=3/(5-3x)^2, find the the equation of the line normal to the graph at point P, where x=2. Give your answer in the form ax+by+c=0

Find out the value of the y coordinate where x=2y=3/(5-3(2))^2=3Differentiate function in order to find the gradient of the graph at point Py=3/(5-3x)^-2Use chain rule where u=5-3xdu/dx=-3dy/dx=3u^-2Hence dy/dx=-6u^-3*-3dy/dx=18(5-3x)^-3dy/dx at x=2 is 18(5-3*2)^-3=-18Take negative reciprocal of 18 to find gradient of line normal to graph-18-->1/18y-y1=m(x-x1)Substitute in valuesy-3=1/18(x-2)18y-54=x-218y-x-52=0-x+18y-52=0

JI
Answered by Jazib I. Maths tutor

4326 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y = 2x(x^2 – 1)^5, show that dy/dx = g(x)(x^2 – 1)^4 where g(x) is a function to be determined.


Differentiate y = x^3 + 2x^2 + 4x + 3


g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).


The first term of an arithmetic series is a and the common difference is d. The 12th term is 66.5 and the 19th term is 98. Write down two equations in a and d then solve these simultaneous equations to find a and d.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning