Integrate, with respect to x, xCos3x

Integration by parts:
u = x u' = 1v' = Cos3x v = (Sin3x)/3 + c
So, ∫xCos3x= (XSin3x)/3 - ∫(Sin3x)/3 dx= (XSin3x)/3 - 1/3( - (Cos3x)/3) + c = (XSin3x)/3 + (Cos3x)/9 + c

Answered by Maths tutor

3856 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is an improper fraction, and how to I make thisproper so that it can be differentiated?


What is the chain rule?


Find the stationary point(s) of the curve: y = 3x^4 - 8x^3 - 3.


Show that (x-2) is a factor of 3x^3 -8x^2 +3x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning