Integrate, with respect to x, xCos3x

Integration by parts:
u = x u' = 1v' = Cos3x v = (Sin3x)/3 + c
So, ∫xCos3x= (XSin3x)/3 - ∫(Sin3x)/3 dx= (XSin3x)/3 - 1/3( - (Cos3x)/3) + c = (XSin3x)/3 + (Cos3x)/9 + c

Answered by Maths tutor

3544 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I prove (x-2) is a factor of the function f(x) = x^2-4x+4?


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


Integrate sin7xcos3x


Find the stationary points of the function f(x) = x^3 - 27x and determine whether they are maxima or minima


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences