Integrate, with respect to x, xCos3x

Integration by parts:
u = x u' = 1v' = Cos3x v = (Sin3x)/3 + c
So, ∫xCos3x= (XSin3x)/3 - ∫(Sin3x)/3 dx= (XSin3x)/3 - 1/3( - (Cos3x)/3) + c = (XSin3x)/3 + (Cos3x)/9 + c

Answered by Maths tutor

3975 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the circle (x-3)^2 + (y-4)^2 = 13 that passes through the point (1,7)


Solve the simultaneous equations: y-2x-4=0, 4x^2+y^2+20x=0


Differentiate the equation x^2 + 2y^2 = 4x


Showing all your working, evaluate ∫(21x^6 - e^2x- (1/x) +6)dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning