Integrate, with respect to x, xCos3x

Integration by parts:
u = x u' = 1v' = Cos3x v = (Sin3x)/3 + c
So, ∫xCos3x= (XSin3x)/3 - ∫(Sin3x)/3 dx= (XSin3x)/3 - 1/3( - (Cos3x)/3) + c = (XSin3x)/3 + (Cos3x)/9 + c

Answered by Maths tutor

3935 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ln(x)


How do I differentiate an expression of the form y = (ax+b)^n?


(Using the Quotient Rule) -> Show that the derivative of (cosx)/(sinx) is (-1)/(sinx).


Use the formula 5p + 2q = t to find the value of q when p = 4 and t = 24. 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning