Solve these two equations simultaneously: 7x + y = 1 and 2x^2 - y = 3.

Equation 1: 2x2 - y = 3 and Equation 2: 7x + y = 1. Rearrange equation 1 to make y the subject: 2x2 - y = 3, 2x2 - 3 = y. Substitute equation 1 into equation 2 to get equation 3: 7x + (2x2 - 3) = 1, 7x + 2x2 - 3 = 1, 2x2 + 7x - 3 = 1, 2x2 + 7x - 4 = 0. Solve equation 3 to get values of x: 2x2 + 7x - 4 = 0, (2x - 1)(x + 4) = 0 so 2x - 1= 0, 2x = 1, x = 1/2 and x + 4 = 0, x = -4. Substitute the values of x into equation 2: 7x + y = 1, 7(1/2) + y = 1, 7/2 + y = 1, y = -5/2 and 7x + y = 1, 7(-4) + y = 1, -28 +y = 1, y = 29. Therefore the answer to the solution is: x = 1/2 y = -5/2 and x = -4 y = 29.

DD
Answered by Darcie D. Maths tutor

3657 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If Tom flips a coin 3 times, what is the probability the result are heads, heads, heads, or tails,heads, tails? (assuming we have a fair coin)


Samuel had 3 piles of coins, I, II and III. Altogether there was 72p. Pile II had twice as much as pile I. Pile III had three times as much as pile II. How much money was in Pile III?


Simplify 3!/5!


Use factorisation to solve the equation x^2+5x+6=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning