The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.

To factorise the equation, we first need to find one of its roots. To do this, we need to find values of x for which f(x)=0.First we will guess x=1.So f(1)=2(13) - 7(12) + 2(1) + 3 = 2-7+2+3=0This tells us that 1 is a root.By algebraic long division, we divide f(x) by x-1 to give f(x)=(x-1)(2x2-5x-3)By guessing again we find that f(3)=0. And by dividing 2x2-5x-3 by x-3 we get 2x2-5x-3 = (x-3)(2x-1).This gives us f(x)=(x-1)(x-3)(2x-1)

Answered by Maths tutor

3462 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points P (2,3.6) and Q(2.2,2.4) lie on the curve y=f(x) . Use P and Q to estimate the gradient of the curve at the point where x=2 .


Find the centre and radius of the circle with the equation x^2 + y^2 - 8x - 6y - 20 = 0.


Derive the quadratic formula. From it, write down the determinant and explain, how is it related to the roots of a quadratic equation.


How do you differentiate using the chain rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning