Differentate sin(x^2+1) with respect to x

y = sin(x2+1) In general, the chain rule is: dy/dx = f(g(x)) = df/dg * dg/dx Applying this to y: dy/dx = d(sin(x2+1))/d(x2+1) * d(x2+1)/dx = cos(x2+1) * (2x) = 2xcos(x2+1)

Answered by Maths tutor

3393 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate z = e^(3y^2+5) with respect to y. (Hint: use chain rule.)


solve the equation 2cos x=3tan x, for 0°<x<360°


How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2


Find the equation of the tangent to the curve y = 4x^2 (x+3)^5 at the point (-1, 128).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning