The curve C has equation y = 3x^4 – 8x^3 – 3 Find (i) dy/dx (ii) the co-ordinates of the stationary point(s)

i) dy/dx=12x^3-24x^2ii) the stationary points occur when dy/dx = 0 so we must find the solutions to 12x^3-24x^2=0.12x^3-24x^2= 12x^2(x-2)=0Therefore our stationary points are when 12x^2=0 ie x=0 and x-2=0 ie x=2.Substituting our x co-ordinates into the original equation, we get our co-ordinates out as (0,-3) and (2,-19)

Answered by Maths tutor

2435 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I differentiate y=2(e^x)sin(5x) ?


Express (5x + 4)/(x +2)(x - 1) in partial fractions.


(a) By using a suitable trigonometrical identity, solve the equation tan(2x-π/6)^2 =11-sec(2x-π/6)giving all values of x in radians to two decimal places in the interval 0<=x <=π .


How to find out where 2 lines cross/simultaneous equations


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences