Find the area contained under the curve y =3x^2 - x^3 between 0 and 3

Equation of curve is: y = y =3x2 - x3To find area need to integrate between 0 and 3So integrating each term gives x3 - x4/4 + cThen sub in the limits [(33 - 34/4) - (03 - 04/4)] = 27-81/4 = 27 - 20.25 = 6.75

JR
Answered by Juan R. Maths tutor

2691 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations: X = 3 – 4t , y = 1 + (2/t) Find (dy/dx) in terms of t.


How to do the chain rule.


How do I calculate the reactant forces for the supports of the beam where the centre of mass is not same distance from each support?


A spherical balloon of radius r cm has volume Vcm^3 , where V =4/3 * pi * r^3. The balloon is inflated at a constant rate of 10 cm^3 s^-1 . Find the rate of increase of r when r = 8.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning