Find the area contained under the curve y =3x^2 - x^3 between 0 and 3

Equation of curve is: y = y =3x2 - x3To find area need to integrate between 0 and 3So integrating each term gives x3 - x4/4 + cThen sub in the limits [(33 - 34/4) - (03 - 04/4)] = 27-81/4 = 27 - 20.25 = 6.75

JR
Answered by Juan R. Maths tutor

2364 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve f(x,y) is defined by sin(3y)+3ye^(-2x)+2x^2 = 5. Find dy/dx


Find the set of values for which x^2 - 7x - 18 >0


Find the turning points of the curve y = 3x^4 - 8x^3 -3


Simplify (5-root3)/(5+root3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences