Find the area contained under the curve y =3x^2 - x^3 between 0 and 3

Equation of curve is: y = y =3x2 - x3To find area need to integrate between 0 and 3So integrating each term gives x3 - x4/4 + cThen sub in the limits [(33 - 34/4) - (03 - 04/4)] = 27-81/4 = 27 - 20.25 = 6.75

JR
Answered by Juan R. Maths tutor

2583 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the sationary points on the curve x^2 -xy+y^2=12


How Do I Integrate cos(x) and sin(x) with higher powers?


Express x^2-4x+9 in the form (x-p)^2+q where p and q are integers


Use the chain rule to show that, if y = sec(x), then dy/dx = sec(x)tan(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning