Find the area contained under the curve y =3x^2 - x^3 between 0 and 3

Equation of curve is: y = y =3x2 - x3To find area need to integrate between 0 and 3So integrating each term gives x3 - x4/4 + cThen sub in the limits [(33 - 34/4) - (03 - 04/4)] = 27-81/4 = 27 - 20.25 = 6.75

JR
Answered by Juan R. Maths tutor

2401 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

dh/dt = (6-h)/20. When t=0, h=1. Show that t=20ln(5/(6-h))


Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.


Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.


Differentiaate the folowing equation with respect to x: y=4x^3-3x^2+9x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences