The second and fourth term of a geometric series is 100 and 225 respectively. Find the common ratio and first term of the series. Round your answer to 2 d.p if necessary

Formula for a Geometric series for term n = arn , where a = the first term and r = common ratio.Therefore, with the information given we can write that ar2 = 100 and ar4 = 225 , where a and r are the constants we're trying to find
By dividing these two equations together we get that ar4 / ar2 = 225 / 100this can then be simplified to r2 = 2.25, which can be square rooted to show that r = 1.5
After working this out, when can sub r=1.5 back into one of the equations for the two terms given, for example ar2 = 100, to get that a(1.5)2 = 100 by dividing by 1.52 on both sides we can show that a = 44.44 to 2 d.p

Answered by Maths tutor

3302 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let w, z be complex numbers. Show that |wz|=|w||z|, and using the fact that x=|x|e^{arg(x)i}, show further that arg(wz)=arg(w)+arg(z) where |.| is the absolute value and arg(.) is the angle (in polar coordinates). Hence, find all solutions to x^n=1 .


Derive double angle formulas from addition formulae


Find the exact solution to the equation: ln(3x-7) =5


Find the equation of the tangent to the curve y = x^2-2x-3 at x=-1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences