C is a circle with equation x^2 + y^2 = 16. The point P = (3,√7) is on C. Find the equation of the tangent to C at the point P.

First, we note the centre of the circle is at the origin (0,0). Then we calculate the gradient of the line OP, the line connecting the origin to P. The gradient = change in y / change in x = (√7 - 0) / (3 - 0) = √7 / 3. We know that m1 x m2 = -1 when m1 and m2 are the gradients of perpendicular lines. Hence the gradient of the tangent to C at P is -1 / (√7 / 3) = -3 / √7.Writing the equation of the tangent in the form y = mx + c we know y = (-3 / √7)x + c. To find the value of c we use the values of x and y given by P as we know P is on this line. This gives us √7 = (-3 / √7)(3) + c and rearranging to make c the subject gives √7 + 9/√7 = c. Making √7 the common denominator we can see that c = 16/√7 and hence the equation of the tangent is y = (-3 / √7)x + 16/√7.

DC
Answered by Daniel C. Maths tutor

3147 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 3x=2y and 2xy=12


Two apples and three bananas cost a total of £1.30. Seven apples and one banana cost a total of £1.70. Find the cost of a) one apple and b) one banana.


Expand the expression (3x+2)(3-2x)


Solve x^2+6x+5=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning