C is a circle with equation x^2 + y^2 = 16. The point P = (3,√7) is on C. Find the equation of the tangent to C at the point P.

First, we note the centre of the circle is at the origin (0,0). Then we calculate the gradient of the line OP, the line connecting the origin to P. The gradient = change in y / change in x = (√7 - 0) / (3 - 0) = √7 / 3. We know that m1 x m2 = -1 when m1 and m2 are the gradients of perpendicular lines. Hence the gradient of the tangent to C at P is -1 / (√7 / 3) = -3 / √7.Writing the equation of the tangent in the form y = mx + c we know y = (-3 / √7)x + c. To find the value of c we use the values of x and y given by P as we know P is on this line. This gives us √7 = (-3 / √7)(3) + c and rearranging to make c the subject gives √7 + 9/√7 = c. Making √7 the common denominator we can see that c = 16/√7 and hence the equation of the tangent is y = (-3 / √7)x + 16/√7.

DC
Answered by Daniel C. Maths tutor

3374 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make a the subject of the formula f=(a+1)/2


What is the general equation for a straight graph line and what does each part represent?


How do you find the HCF of 110 and 132


How do you factorise a quadratic?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning