A function is defined by f(x)= e^(x^2+4), all real x. Find inverse of f(x) and its domain.

Let f(x)=y: y = e^(x2+4); To find the inverse of a function, you need to find x in terms of y. In this case, you need to bring the exponent to the base. So in order to bring x2+4 from the power, take natural log of both sides so: ln(y) = ln(e^(x2+4)); ln(e^(a)) = a, where a is some function. This means that: ln(y) = x2+4; Now that x is a base, the algebra becomes simple. Isolate x; x2 = ln(y) - 4; Simplify; x = sqrt(ln(y) - 4); This is the inverse. However, to use the same terms as the original function let x = y and y = x, so; y = sqrt(ln(x)-4).

EC
Answered by Elisa C. Maths tutor

2768 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation; 4 cos^2 (x) + 7 sin (x) – 7 = 0, giving all answers between 0° and 360°.


Where do the kinematics equations (SUVAT) come from?


Find d^2y/dx^2 for y=4x^4−3x^3−6x^2+x


If a circle passes through points (2,0) and (10,0) and it has tangent line along the y-axis, then what are the possible equations of the circle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences