A function is defined by f(x)= e^(x^2+4), all real x. Find inverse of f(x) and its domain.

Let f(x)=y: y = e^(x2+4); To find the inverse of a function, you need to find x in terms of y. In this case, you need to bring the exponent to the base. So in order to bring x2+4 from the power, take natural log of both sides so: ln(y) = ln(e^(x2+4)); ln(e^(a)) = a, where a is some function. This means that: ln(y) = x2+4; Now that x is a base, the algebra becomes simple. Isolate x; x2 = ln(y) - 4; Simplify; x = sqrt(ln(y) - 4); This is the inverse. However, to use the same terms as the original function let x = y and y = x, so; y = sqrt(ln(x)-4).

EC
Answered by Elisa C. Maths tutor

3112 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A projectile is thrown from the ground at 30 degrees from the horizontal direction with an initial speed of 20m/s. What is the horizontal distance travelled before it hits the ground? Take the acceleration due to gravity as 9.8m/s^2


Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta


A line L is parallel to y = 4x+5 and passes through the point (-1,6). Find the equation of the line L in the form y = ax+b.


What is De Moivre's theorem?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning