Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.

First, we must find the two points at which the curve crosses the boundary. To do this, set y=0 and solve.0 = 5x - 2x2 - 20 = (2x - 1)(-x+2)This gives that x = 0.5 and x = 2Next, we integrate with these boundsI20.5 (5x - 2x2 - 2) dx = [2.5x2 - 2/3 x3 - 2x]20.5 = ( 2.54 - 2/38 - 22 - 2.50.25 + 2/30.125 + 20.5 ) = 1.125

NK
Answered by Natassja K. Maths tutor

3249 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider a cone of vertical height H (in metres) and base radius R (in metres) which is full with water. The cone, at time t=0, starts to leak such that it loses water at a rate of k m^3 per second. Give an expression for the rate of change of H.


The curve C has the equation: y=3x^2*(x+2)^6 Find dy/dx


Differentiate 5x^2 + 11x + 5 with respect to x


A curve has the equation: x^3 - x - y^3 - 20 = 0. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences