Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.

First, we must find the two points at which the curve crosses the boundary. To do this, set y=0 and solve.0 = 5x - 2x2 - 20 = (2x - 1)(-x+2)This gives that x = 0.5 and x = 2Next, we integrate with these boundsI20.5 (5x - 2x2 - 2) dx = [2.5x2 - 2/3 x3 - 2x]20.5 = ( 2.54 - 2/38 - 22 - 2.50.25 + 2/30.125 + 20.5 ) = 1.125

NK
Answered by Natassja K. Maths tutor

3623 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx of the curve x^3+5xy-2y^2-57=0


What are radians, why can't we just use degrees?


The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


Is the function f(x)=x^3+24x+3 an increasing or decreasing function?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning