When is an arrangement a combination, and when a permutation?

An arrangement is a permutation when we care about the order of the elements in it, and a combination when we do not. So if we are for example choosing a group of 3 people from 10 students, we do not care about the order; we want a combination and hence use n!/(r!(n-r)!) = 10!/(3!7!). If we now decided that when we choose this group, the first person chosen is the team leader, the second is secretary, and the third is treasurer, then there are more ways of assembling different groups as we care about the distribution of roles; the order in which students are picked matters. Hence we now use the rule for permutations, n!/(n-r)! = 10!/7!.

LW
Answered by Liora W. Maths tutor

6087 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The Curve C shows parametric equations x = 4tant and y = 5((3)^1/2)(sin2t) , Point P is located at (4(3)^1/2, 15/2) Find dy/dx at P.


Differentiate the function y=4sqrt(x)


why is sin(x) squared plus cos(x) squared 1?


Proof by Induction - "What's the point if we already know the answer?"


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning