When is an arrangement a combination, and when a permutation?

An arrangement is a permutation when we care about the order of the elements in it, and a combination when we do not. So if we are for example choosing a group of 3 people from 10 students, we do not care about the order; we want a combination and hence use n!/(r!(n-r)!) = 10!/(3!7!). If we now decided that when we choose this group, the first person chosen is the team leader, the second is secretary, and the third is treasurer, then there are more ways of assembling different groups as we care about the distribution of roles; the order in which students are picked matters. Hence we now use the rule for permutations, n!/(n-r)! = 10!/7!.

LW
Answered by Liora W. Maths tutor

6241 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants


Consider the unit hyperbola, whose equation is given by x^2 - y^2 = 1. We denote the origin, (0, 0) by O. Choose any point P on the curve, and label its reflection in the x axis P'. Show that the line OP and the tangent line to P' meet at a right angle.


Evaluate the integral (write on whiteboard, too complicated to write here)


give the coordinates of the stationary points of the curve y = x^4 - 4x^3 + 27 and state with reason if they are minumum, maximum, or points of inflection.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning