Express cos(2x) in the form acos^2(x) + b, where a and b are constants.

we first remember the double angle formula, a really important formula. cos(2x) = cos2(x) - sin2(x).We know that sin2(x) + cos2(x) = 1, therefore, cos(2x) = cos2(x) + cos2(x) - 1. Giving our final answer to be, cos(2x) = 2cos2(x) - 1.

JP
Answered by Jack P. Maths tutor

6383 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to y = x^2 - 4x + 9 at the point (3,15)


Suppose that you go to a party where everyone knows at least one other person, you get a bit bored and wonder whether there are at least two people which know the same number of people there.


using integration by parts evaluate the integral of xsinx between x=0 and x =pi/2


If y = 1/(x^2) + 4x, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning