In a triangle ABC, side AB=10 cm, side AC=5cm and the angle BAC=θ, measured in degrees. The area of triangle ABC is 15cm(sq). Find 2 possible values for cosθ and the exact length of BC, given that it is the longest side of the triangle.

To find cosθ, use the formula for the area of a triangle i.e. AREA=1/2 x a x b x sinC.=> For this case: 15= 1/2 x 10 x 5 x sinC to find sinC.=> SinC = 3/5 thus, Arcsin(3/5)=+- 4/5 or +-0.8
To find the exact length of BC, use the cosine rule.=> c(sq)=a(sq)+b(sq)-2abCosC=> c(sq)=10(sq)+5(sq)-2(10)(5)(+-4/5)=> c(sq)= Square root of 205

Answered by Maths tutor

22095 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the centre of the circle with equation: x^2 + y^2 − 2*x + 14*y = 0


Given that y = 4x^3 -1 + 2x^1/2 (where x>0) find dy/dx.


Differentiate y = arcsin(x) with respect to x


Solve the simultaneous equations: y - 3x + 2 = 0 y^2 - x - 6x^2 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences