In a triangle ABC, side AB=10 cm, side AC=5cm and the angle BAC=θ, measured in degrees. The area of triangle ABC is 15cm(sq). Find 2 possible values for cosθ and the exact length of BC, given that it is the longest side of the triangle.

To find cosθ, use the formula for the area of a triangle i.e. AREA=1/2 x a x b x sinC.=> For this case: 15= 1/2 x 10 x 5 x sinC to find sinC.=> SinC = 3/5 thus, Arcsin(3/5)=+- 4/5 or +-0.8
To find the exact length of BC, use the cosine rule.=> c(sq)=a(sq)+b(sq)-2abCosC=> c(sq)=10(sq)+5(sq)-2(10)(5)(+-4/5)=> c(sq)= Square root of 205

Answered by Maths tutor

22939 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The circle (x-3)^2 +(x-2)^2 = 20 has centre C. Write down the radius of the circle and the coordinates of C.


Integrate y with respect to x, where y = cos(x)/[1+tan^2(x)]


Do the circles with equations x^2 -2x + y^2 - 2y=7 and x^2 -10x + y^2 -8y=-37 touch and if so, in what way (tangent to each other? two point of intersection?)


Integral of 1/(x^3 + 2x^2 -x - 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning