Find the equation of the tangent to the curve y=x^3 + 4x^2 - 2x - 3 where x = -4

(1) is the equation y=x3+4x2-2x-3. First we want to find the coordinates of the curve for x=-4. This means that we are going to substitute x=-4 into (1) to find the value of y. y=(-4)3+ 4(-4)2- 2(-4) -3 , so y = 5. This means that the curve passes through the point (-4, 5) and the tangent also passes through this point. The tangent is going to be in the form y=ax+b (as the tangent is a straight line) where a is the gradient of the tangent. a is also the gradient of the curve at the point x=-4. To find a, we need to differentiate the equation for the curve , and substitute in the value of x=-4. Differentiating (1) we get dy/dx = 3x2+8x-2. Substituting in x=-4, dy/dx = 3(-4)2+8(-4)-2, so dy/dx= 14. This means that a=14. We now know the gradient of the tangent (14) and a point which the tangent passes through (-4,5). Using the formula for a point on a straight line with coordinates (c,d) and gradient m, (y-d)/(x-c) = m. So (y-5) / (x-(-4))= 14. Multiplying both sides of the equation by (x+4) gives y-5 = 14 (x+4). Expanding the brackets gives y-5 = 14x + 56. Adding 5 to both sides gives y = 14x + 61. This is in the form y = ax+b, so the answer is y = 14x+61.

Answered by Lizzie B. Maths tutor

4677 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0


Integrate lnx


Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


A curve has an equation: (2x^2)*y +2x + 4y – cos(pi*y) = 17. Find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy