f(x) = (x + 1)^2 and g(x) = 2(x - 1) Show that gf(x) = 2x(x + 2)

For this question, as we are looking for gf(x) so we first need to plug in our formula for f(x) into the g(x) formula, giving us:
2((x+1)^2 - 1)
We can then expand our squared bracket to get:
2(x^2 + 2x + 1 - 1)
We can see the +1 and -1 term now cancel out leaving us with:
2(x^2 + 2x)
And finally we take the common term from within the bracket to the outside (both terms share an x) to finish with:
2x(x + 2)

DM
Answered by Django M. Maths tutor

2945 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve y = x^2 + 3x + 2 = 0


Jodie buys 12 cans of cola. There are 330 ml of cola in each can. Rob buys 4 bottles of cola. There is 1 litre of cola in each bottle. Rob buys more cola than Jodie. How much more?


y=6x+2 Find the gradient of the line and the y intersect


What is a vector and how do I calculate the 'modulus' of a vector?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning