How do you find the distance a ball travels if fired at speed u and angle theta from the ground?

From a right angled triangle with hypotenuse u and angle theta, we see the horizontal speed is (u cos theta) and the initial vertical speed is (u sin theta). As the ball moves in a symmetric parabola, it hits the ground with vertical speed (-u sin theta).Therefore, the ball must be in the air for (2 u sin theta / g) seconds, so it travels a distance of (2 u^2 sin theta cos theta / g). This can be simplified to (u^2 sin (2 theta) / g).

DB
Answered by Douglas B. Maths tutor

2996 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the equation y=e^2x.ln(4x^2) when x=5.


Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.


The curve C has equation: 2x^2y + 2x + 4y – cos (piy) = 17. Use implicit differentiation to find dy/dx in terms of x and y.


dx/dt=-5x/2 t>=0 when x=60 t=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning