How do you find the distance a ball travels if fired at speed u and angle theta from the ground?

From a right angled triangle with hypotenuse u and angle theta, we see the horizontal speed is (u cos theta) and the initial vertical speed is (u sin theta). As the ball moves in a symmetric parabola, it hits the ground with vertical speed (-u sin theta).Therefore, the ball must be in the air for (2 u sin theta / g) seconds, so it travels a distance of (2 u^2 sin theta cos theta / g). This can be simplified to (u^2 sin (2 theta) / g).

DB
Answered by Douglas B. Maths tutor

2952 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: y=(6x^2-1)/2sqrt(x)


Solve the equation 3 sin^2 theta = 4 cos theta − 1 for 0 ≤ theta ≤ 360


How to complete the square?


How can I maximise my performance and efficiency in an exam?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning