How do you find the distance a ball travels if fired at speed u and angle theta from the ground?

From a right angled triangle with hypotenuse u and angle theta, we see the horizontal speed is (u cos theta) and the initial vertical speed is (u sin theta). As the ball moves in a symmetric parabola, it hits the ground with vertical speed (-u sin theta).Therefore, the ball must be in the air for (2 u sin theta / g) seconds, so it travels a distance of (2 u^2 sin theta cos theta / g). This can be simplified to (u^2 sin (2 theta) / g).

DB
Answered by Douglas B. Maths tutor

2490 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A-level: solve 8cos^2(x)+6sin(x)-6=3 for 0<x<2(pi)


Express x^2-7x+2 in the form (x-p)^2+q where p and q are rational. Hence or otherwise find the minimum value of x^2-7x+2


Compare the following logarithms in base 1/2 without a calculator: log(8) and log(512)


Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences