Let f(x) and g(x) be two odd functions defined for all real values of x. Given that s(x)=f(x)+g(x), prove that s(x) is also an odd function.

We recall that a function f(x) is said to be an odd function when f(-x)=-f(x).

We are told that f(x) and g(x) are odd functions, so we know from the above definition that:

1. f(-x)=-f(x)

2. g(-x)=-g(x)

Solution

We want to show that s(x) is an odd function. In other words, we want to show that s(-x)=-s(x) (that it satisfies the above definition).

We are told that s(x)=f(x)+g(x), so substituting x for -x, we get that

s(-x)=f(-x)+g(-x)

=-f(x)-g(x) (using 1 and 2)

=-(f(x)+g(x))

=-s(x) as required!

We have now shown that s(-x)=-s(x) and thus we have proven that s(x) is indeed an odd function.

KH
Answered by Keir H. Maths tutor

14123 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate: y=[xcos(x^3)]/[(x^4 + 1)^3] with respect to x


A curve has the equation, 6x^2 +3xy−y^2 +6=0 and passes through the point A (-5, 10). Find the equation of the normal to the curve at A.


y = x*(x-2)^-1/2. Prove dy\dx = (x-4)/2*(x-2)^3/2


How do I differentiate: (3x + 7)^2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning