How to differentiate with respect to x, xsin2x.

There are to parts involving x in this expression, so we need to use the product rule. Let u=x and v=sin2x.So we find u'=1, and v'=2sin2x. Then the formula for the product rule gives us that d/dx(uv)= uv' + vu'. so substituting in our values gives us that d/dx(xsin2x) = x(2sin2x) + 1(x) = 2xsin2x + x.

ER
Answered by Emily R. Maths tutor

9289 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate sin^2(3x)cos^3(3x) dx?


Find the derivative for y=5x^3-2x^2+7x-15


Calculate the integral of e^x*sin x


How would you work out the equation of the normal at a point (2,5) given the equation of a line?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning