How to differentiate with respect to x, xsin2x.

There are to parts involving x in this expression, so we need to use the product rule. Let u=x and v=sin2x.So we find u'=1, and v'=2sin2x. Then the formula for the product rule gives us that d/dx(uv)= uv' + vu'. so substituting in our values gives us that d/dx(xsin2x) = x(2sin2x) + 1(x) = 2xsin2x + x.

ER
Answered by Emily R. Maths tutor

8118 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the difference between definite and indefinite integrals?


Why is the derivative of x^n, nx^(n-1)?


Prove n^3 - n is a multiple of 3


Evaluate the integral ∫(sin3x)(cos3x)dx (C4 Integration)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences