Prove by contradiction that 2^(1/3) is an irrational number

Assume 2^(1/3) is rational, so can be written as p/q where p and q are integers with no common factors. p/q = 2^(1/3) (p^3)/(q^3) = 2 p^3 = 2q^3 Hence, p is even. Thus, p can be written as 2r, where r is an integer. p^3 = (2r)^3 = 2q^3 8r^3 = 2q^3 4r^3 = q^3 Hence, q is even. Therefore, p and q have common factor 2, which is a contradiction.

OR
Answered by Oscar R. Maths tutor

12753 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is differentiation in mathematics and what does it represent?


Solve the


The gradient of a curve is defined as Dy/dx = 3x^2 + 3x and it passes through the point (0,0), what is the equation of the curve


The line y=5-x intersects the curve y=x^2-3x+2 at the points P and Q. Find the (x,y) coordinates of P and Q.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning