Differentiate the function: y = sin(x^2)*ln(5x)

We are tasked with differentiating y = sin(x2)ln(5x)
This function is actually a product of the functions:
sin(x2) and ln(5x)
Therefore the product rule will be required.
First let's calculate the derivatives of our individual functions before combining them.
The derivative of sin(x2) is 2x
cos(x2) using the chain rule.
The derivative of ln(5x) is 1/x.
Now to combine these using the product rule. Our answer will be:
2x*cos(x2)*ln(5x) + sin(x2)*1/x

TC
Answered by Thomas C. Maths tutor

8495 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.


Find the exact value of sin(75°). Give your answer in its simplest form.


When I try to integrate by parts, I end up in an infinite loop. Why is this, and how do you stop?


4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences