Differentiate the function: y = sin(x^2)*ln(5x)

We are tasked with differentiating y = sin(x2)ln(5x)
This function is actually a product of the functions:
sin(x2) and ln(5x)
Therefore the product rule will be required.
First let's calculate the derivatives of our individual functions before combining them.
The derivative of sin(x2) is 2x
cos(x2) using the chain rule.
The derivative of ln(5x) is 1/x.
Now to combine these using the product rule. Our answer will be:
2x*cos(x2)*ln(5x) + sin(x2)*1/x

TC
Answered by Thomas C. Maths tutor

9266 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that (2x + 11 )/(2x + 1)(x + 3) ≡ A /(2x + 1) + B /(x + 3) , find the values of the constants A and B. Hence show that the integral from 0 to 2 (2x + 11)/ (2x + 1)(x + 3) dx = ln 15.


Solve for 0<x≤2π, cos^2(x)-3cos(x)=5sin^2(x)-2, giving all answers exactly


A Block of mass 2kg is on an a smooth inclined plane where sin@ = 3/5 at point A. Point B is 5 meters down the incline. Find the time it will take for the block to reach point given it is at rest at point A.


How do I remember what trig functions differentiate to?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning