The rate of growth of a population of micro-organisms is modelled by the equation: dP/dt = 3t^2+6t, where P is the population size at time t hours. Given that P=100 at t=1, find P in terms of t.

First, we integrate the equation with respect to t to find an equation for P. dP/dt = 3t2 + 6t Then, P= integral (3t2 + 6t) dt Integrating gives P= t3+3t2+c, c is the constant of integration. As we are given the boundary condition P=100 when t=1, sub in these values into the equation for P to find what c is. 100=13+3(12) +c Gives c=96 We get an equation for P with the correct value of c, P=t3+3t2+96

CB
Answered by Claire B. Maths tutor

3190 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The mass of a substance is increasing exponentially. Initially its mass is 37.5g, 5 months later its mass is 52g. What is its mass 9 months after the initial value to 2 d.p?


Use the substitution u=x^2-2 to find the integral of (6x^3+4x)/sqrt( x^2-2)


An ellipse has the equation (x^2)/4 + (y^2)/9 = 1. Find the equation of the tangent at (-6/5 , 12/5)


How do I find the stationary points of a curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning