The rate of growth of a population of micro-organisms is modelled by the equation: dP/dt = 3t^2+6t, where P is the population size at time t hours. Given that P=100 at t=1, find P in terms of t.

First, we integrate the equation with respect to t to find an equation for P. dP/dt = 3t2 + 6t Then, P= integral (3t2 + 6t) dt Integrating gives P= t3+3t2+c, c is the constant of integration. As we are given the boundary condition P=100 when t=1, sub in these values into the equation for P to find what c is. 100=13+3(12) +c Gives c=96 We get an equation for P with the correct value of c, P=t3+3t2+96

CB
Answered by Claire B. Maths tutor

3006 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 2x^5 - 1/4x^3 - 5


What is a derivative?


Solve for 0<x≤2π, cos^2(x)-3cos(x)=5sin^2(x)-2, giving all answers exactly


How do you find the acute angle between two intersecting lines whos equations are given in vector form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences