Prove that the square of an odd number is always 1 more than a multiple of 4

First we need to find a general form for an odd number, so that we can prove that when we square it, it will be 1 more than a multiple of 4 regardless of which odd number it is. An even number can always be represented as 2n, with n being any number, as this is always divisible by 2 and therefore even. An odd number is always one more than an even number so we can show this as 2n + 1Now we have a general form for an odd number, we can think about what happens when we square it. (2n + 1)2 = (2n + 1)(2n +1) = 4n2 + 2n + 2n + 1 = 4n2 + 4n +1We can rewrite this by taking out a common factor of 4 from the first two terms, giving us: 4(n2 + n) + 14(n2 + n) is divisible by 4. Which means the answer is always 1 more than a multiple of 4, as required

IA
Answered by Isobel A. Maths tutor

2536 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the gradient of the curve 3x^3 + 7x at the point x=3?


A curve has the equation y=x^2+4x+4 and a line has the equation y=2x+3. Show the line and curve have only one point of intersection and find its coordinate..


A rectangle has an area of 20cm^2. Its length and width are enlarged by a factor of 3. Find the area of the enlarged rectangle.


Solve the simultaneous equations “x^2+y^2=4” and “x=2-y”. What does this tell us about the circle centred on the origin, with radius 2, and the straight line with y-intercept 2 and gradient -1?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning