Find the area between the curve y = 8 + 2x - x^2 and the line y = 8 - 2x.

First sketch the curve and the line, noting down where they intersect each axis.area under y = 8 + 2x - x2 is given by the integral between 0 and 4 of (8 + 2x - x2) dx.area under line is given by the integral between 0 and 4 of (8-2x) dx. It's easier to do this than using the formula for area of a triangle!!So total area:area = integral between 0 and 4 of (8 + 2x - x2) dx - integral between 0 and 4 of (8-2x) dxarea = integral between 0 and 4 of (8 + 2x - x2 - (8-2x))dx Note we can combine the two integrals!!area = integral between 0 and 4 of (4x - x2) dxarea = [2x2 - x3/3]40 = 32/3

Answered by Maths tutor

4055 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do i find dy/dx in terms of t for two parametric equations that are in terms of t.


Let p(x) =30x^3 - 7x^2 -7x + 2. Prove that (2x+1) is a factor of p(x).


what is the equation of the normal line to the curve y=x^2-4x+3 at the point (5,8)?


Solve the simultaneous equations: y + 4x + 1 = 0, and y^2 + 5x^2 + 2x = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning