Show that ((sqrt(18)+sqrt(2))^2)/(sqrt(8)-2) can be written in the form a(b + 2) where a and b are integers.

First we expand the brackets on the numerator and collect the terms together. We need to get rid of the square root term on the denominator, and we do this by multiplying the numerator and denominator by sqrt(8) + 2 (since this is equivalent to multiplying by 1). This gives us the difference of two squares on the bottom, which can be expanded to give 8 - 4. We can also expand the brackets on the top, and then cancel the factors of 4, leaving us with 8sqrt(8) + 16. We can express sqrt(8) as 2sqrt(2) which gives us a common factor of 16 and the answer 16(1 + sqrt(2)), in the form given by the question.

OA
Answered by Olivia A. Maths tutor

17924 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise x^2 - 8x - 20


Solve the equation to 2 two decimal places: (2x+3/x-4 ) - (2x-8/2x+1) = 1


In a sale, the original price of a bag was reduced by 1/5. The sale price of the bag is £29.40. Work out the original price.


Gavin, Harry and Isabel each earn the same salary. Gavin saves 28% of his salary. Harry spends 3/4 of his salary and saves the rest. The amount Isabel saves:The amount she spends=3:7. Who saves the most?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning