How do you differentiate a^x?

The quick answer is that d/dx a^x = ln(a) * a^x. But why?

Well, let's go through the steps so we can understand why the formula works.

Firstly, a^x can be written as (e^(ln(a)))^x because e^(ln(z)) = z as the natural log (ln) is the inverse of e to the power. Then we can write it as e^(x * ln a) because (a^b)^c = a^(b*c). Then differentiating e^(x * ln a) = ln(a) * a^x!

KM
Answered by Kian M. Maths tutor

150768 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

2 log(x + a) = log(16a^6) where a is a positive constant. How do I find x in terms of a?


using integration by parts evaluate the integral of xsinx between x=0 and x =pi/2


What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?


Solve the simultaneous equations: y = x - 2 and y^2 + x^2 = 10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning