How do I calculate the rate of change of something for which I don't have an equation?

This kind of question is an application of differentiation. If t represents time, any derivative with respect to t is a rate of change. For example, if h represents the depth of water in a cubicle container, dh/dt is the change in depth over time, or the rate of change of the depth in other words. If the question does not give you an equation that directly relates the thing you want the rate of change of to time, it will often give you an equation that relates a different quantity to time. For example, it might ask you to calculate the rate of change of volume of water in the container, but not give you an equation for volume in terms of time, and so one differentiation won't suffice. I find it really helpful to write out what I'm trying to calculate and how I could do so with the given terms. Let's say we need to calculate the rate of change of volume of water in the container. We are given that the rate of change of depth (dh/dt) is 10m/s, and that the container is a cuboid with dimensions of 50x50xh m. We want dV/dt. We have dh/dt, so if we write this out we know that dV/dt = (dh/dt)(some other derivative). If you treat derivatives as fractions (which you normally can), you can see that in order cancel out dh, the other derivative must be dV/dh. We know that the equation for volume in terms of h for a cuboid of dimensions 50x50xh is simply V=2500h. Differentiate this and you get dV/dh=2500. All that's left to do is to multiply the two derivatives together, so dV/dt=102500 = 25000. So the rate of change of volume is 25000m^3/s.

SE
Answered by Sam E. Maths tutor

17408 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

We have the curve f(x) = (x^2-5x)(x-1)+ 3x. Sketch the graph y=f(x), making sure to plot the co-ordinates where the curve meets the axes.


A smooth 4g marble is held at rest on a smooth plane which is fixed at 30 degrees to a horizontal table. The marble is released from rest - what speed is the marble travelling at 5 seconds after being released? Let g = 9.8ms^2


Show, by counter-example, that the statement "If cos(a) = cos(b) then sin(a) = sin(b)" is false.


I don't understand why the function "f(x)=x^2 for all real values of x" has no inverse. Isn't sqrt(x) the inverse?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning