Solve the following simultaneous equations: (1) 3x – 2y = 7 (2) 5x + 2y = 17

When looking at the two equations we can see that the 'y' terms in both equations are the same, but with the opposite sign. This means that by adding the two equations we can eliminate the 'y' values.
Step 1: (1) + (2)
3x - 2y = 7 + [5x + 2y =17]
= 8x = 24therefore: x = 3
Step 2: substitute x = 3 into either of the original equations (1) or (2)
(1) 3 (3) - 2y = 79 - 2y = 7.
Step 3: rearrange to find y
9 - 7 = 2y2 = 2yy = 1
answers: x = 3, y = 1

MF
Answered by madeleine f. Maths tutor

4364 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A is the point with coordinates (5, 9) B is the point with coordinates (d, 15) The gradient of the line AB is 3 Work out the value of d.


In a stack of CDs, there are 3 types: Rock, Pop and Jazz. There are 2 Rock CDs, x Pop CDs, and (2x+5) Jazz CDs. A CD is chosen at random. If the probability it is Rock is 1/20, work out the probability it is Jazz.


The line L passes through the points (-2,3) and (6,9). How do I find the equation of the line that is parallel to L and passes through the point (5,-1)?


Fred is reshaping his garden. He decides to make into a right-angled triangle ABC. The length AB= 5m and the length BC= 12 What is the length of AC?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning