Solve the following simultaneous equations: (1) 3x – 2y = 7 (2) 5x + 2y = 17

When looking at the two equations we can see that the 'y' terms in both equations are the same, but with the opposite sign. This means that by adding the two equations we can eliminate the 'y' values.
Step 1: (1) + (2)
3x - 2y = 7 + [5x + 2y =17]
= 8x = 24therefore: x = 3
Step 2: substitute x = 3 into either of the original equations (1) or (2)
(1) 3 (3) - 2y = 79 - 2y = 7.
Step 3: rearrange to find y
9 - 7 = 2y2 = 2yy = 1
answers: x = 3, y = 1

MF
Answered by madeleine f. Maths tutor

4251 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How can i add algebraic fractions, such as 1/(1-x) + 2/x


Solve 6x^2-13x=5


The new reading for James' electricity bill is 7580, and the old reading is 7510, the price per unit is 13p, how much does James have to pay for his electricity?


Which of the following lines is not perpendicular to y=2x+1? (A) y+1/2x=6 (B) 2y=4-x (C) 2x+y=4 (D) y=-1/2(7+x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning