Jane drops a football from the roof onto the ground below. The ball weighs 0.8kg and the distance the ball falls is 5m. Assuming there are no external forces acting on the ball, what speed will the ball be travelling at just before it hits the ground?

As the ball falls from a height to the floor, the gravitational potential energy stored in the ball will be converted to kinetic energy.The gravitational potential energy of the ball can be calculated using:gpe = mgh : m =0.8kg, g=9.8N/kg, h=5m so gpe = 0.8 x 9.8 x 5 = 39.2JKinetic energy can be calculated using: eK = 0.5 x m x v^2 . We can rearrange this to get v = SqRt (( 2 x eK )/ m).eK = 39.2J, m=0.8kg, so v = SqRt ((2 x 39.2)/0.8) = 9.899 m/s. To 2sf this is 9.9m/s

KO
Answered by Katie O. Physics tutor

1802 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Explain the process of nuclear fusion in the Sun.


Why would you get an electric shock if you touched a wire?


A sound wave has a frequency of 500 Hz. The sound wave has a wavelength of 0.34 m in air. Calculate the speed of the sound wave in air?


A particle of mass 5kg is acted upon by a force of 400N for a distance of 20m along the x axis. What is its final velocity if it is initally at rest?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning