A ladder of length 5 m is place with the foot 2.2 m from the base of a vertical wall. How high up the wall does the ladder reach?

Drawing a diagram will help to visualise the problem and realise it is based on Pythagoras's theorem: a^2 + b^2 = c^2. We have been given 'c' the hypotenuse (5 m) and one of the shorter sides (2.2 m), which we shall say is 'b' leaving one unknown side (a).
We therefore need to rearrange the equation to make 'a' the subject: c^2 - b^2 = a^2. Now substitute in the numbers: 25-2.2 = a^220.16 = a^2. So 'a' is the square root of 20.16, which gives 4.49.
Don't forget the units! So the answer is the ladder will reach 4.49 m up the wall :)

GS
Answered by Gagandeep S. Maths tutor

4208 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A square, with sides of length x cm, is inside a circle. Each vertex of the square is on the circumference of the circle. The area of the circle is 49 cm^2. Work out the value of x. Give your answer correct to 3 significant figures.


Perimeter of isoceles triangle is 24cm. Sides 'x' = x + 3, side 'y' = x + 2, calculate the area


The equation of line L1 is y = 3x-2 and the equation of line L2 is 3y-9x+5 = 0. Show that these two lines are parallel.


How do you solve a quadratic equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning