How do you integrate (2x)/(1+x^2) with respect to x?

The key here is to recognise that this is in the form f'(x)/f(x). We can use the idea that integration is the inverse of differentiation, and the knowledge that the derivative of ln(f(x)) is equal to f'(x)/f(x). In this case f(x)=1+x^2, so we have that the integral of (2x)/(1+x^2) is equal to ln(1+x^2)+c.

Answered by Maths tutor

5029 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(FP3 question). Integrate 1/sqrt(3-4x-x^2).


Differentiate 8x^4 + 2x^2 + 10


Find dy/dx, given that y=(3x+1)/(2x+1)


Where z is a complex number, what is the cartesian form of |Z-2+3i| = 1?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning