How do you integrate (2x)/(1+x^2) with respect to x?

The key here is to recognise that this is in the form f'(x)/f(x). We can use the idea that integration is the inverse of differentiation, and the knowledge that the derivative of ln(f(x)) is equal to f'(x)/f(x). In this case f(x)=1+x^2, so we have that the integral of (2x)/(1+x^2) is equal to ln(1+x^2)+c.

Answered by Maths tutor

4543 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx if y=(x^3)(e^2x)


Why does adding a constant to a function's input (as in f(x-a)) shift the plot of the function along the x-axis?


Why does inverse sin,cos or tan of numbers have multiple answers


Integrate 3 sin(x) + cos(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning