How do you integrate (2x)/(1+x^2) with respect to x?

The key here is to recognise that this is in the form f'(x)/f(x). We can use the idea that integration is the inverse of differentiation, and the knowledge that the derivative of ln(f(x)) is equal to f'(x)/f(x). In this case f(x)=1+x^2, so we have that the integral of (2x)/(1+x^2) is equal to ln(1+x^2)+c.

Answered by Maths tutor

4810 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate | x^7 (ln x)^2 dx ( | used in place of sigma throughout question)


integrate cos^2(2x)sin^3(2x) dx


Differentiate Y = 4X/(X^2+5) and give dy/dx in its simplest form


Find the values of x for which f(x) is an increasing function given that f(x)=8x-2x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning