How do you integrate (2x)/(1+x^2) with respect to x?

The key here is to recognise that this is in the form f'(x)/f(x). We can use the idea that integration is the inverse of differentiation, and the knowledge that the derivative of ln(f(x)) is equal to f'(x)/f(x). In this case f(x)=1+x^2, so we have that the integral of (2x)/(1+x^2) is equal to ln(1+x^2)+c.

Answered by Maths tutor

4673 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

given y = x^2 - 7x + 5, find dy/dx from first principles


If (m+8)(x^2)+m=7-8x has two real roots show that (m+9)(m-8)<0 where m is an arbitrary constant


The line y=5-x intersects the curve y=x^2-3x+2 at the points P and Q. Find the (x,y) coordinates of P and Q.


The complex numbers Z and W are given by Z=3+3i and W=6-i. Giving your answers in the form of x+yi and showing how you clearly obtain them, find: i) 3Z-4W ii) Z*/W


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning