How do you integrate (2x)/(1+x^2) with respect to x?

The key here is to recognise that this is in the form f'(x)/f(x). We can use the idea that integration is the inverse of differentiation, and the knowledge that the derivative of ln(f(x)) is equal to f'(x)/f(x). In this case f(x)=1+x^2, so we have that the integral of (2x)/(1+x^2) is equal to ln(1+x^2)+c.

Answered by Maths tutor

4270 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If cos(x)= 1/3 and x is acute, then find tan(x).


OCR C2 2015 Question 8: (a) Use logarithms to solve the equation 2^(n-3) = 18,000 , giving your answer correct to 3 significant figures. (b) Solve the simultaneous equations log2(x) + log2(y) = 8 & log2(x^2/y) = 7.


Differentiante y = arctan(c)


A girl kicks a ball at a horizontal speed of 15ms^1 off of a ledge 20m above the ground. What is the horizontal displacement of the ball when it hits the ground?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning