How do you integrate (2x)/(1+x^2) with respect to x?

The key here is to recognise that this is in the form f'(x)/f(x). We can use the idea that integration is the inverse of differentiation, and the knowledge that the derivative of ln(f(x)) is equal to f'(x)/f(x). In this case f(x)=1+x^2, so we have that the integral of (2x)/(1+x^2) is equal to ln(1+x^2)+c.

Answered by Maths tutor

5150 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x)=e^x sin(x^2). Find f'(x)


How do you differentiate using the chain rule?


How to differentiate e^x . sin(x)


The quadratic equation 2x^2 + 8x + 1 = 0 has roots a and b. Write down the value of a + b, a*b and a^2 + b^2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning