Integrate xsin(x) with respect to x

Apply the rule for integration for parts: Integral of udv = uv - integral of vdu. Choose u to be the term simplified the most when differentiated; in this case choose u to be x as the differential of x w.r.t x is 1. Then dv is sin(x).This means that du = 1 and v = -cos(x) as this is the integral of sin(x)Therefore the integral of xsin(x) = -xcos(x) - integral of (-cos(x))= -xcos(x) + integral of cos(x)= -xcos(x) + sin(x) + cWe must be careful not to forget the constant of integration, c. This arises due to the fact that any constant (i.e. any term with no x dependence) becomes zero when differentiated.

MS
Answered by Michael S. Maths tutor

3296 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: x^2 + y^2 = 10 and x + 2y = 5


x = 2t + 5, y = 3 + 4/t. a) Find dy/dx at (9.5) and b) find y in terms of x.


A football is kicked at 30 m/s at an angle of 20° to the horizontal. It travels towards the goal which is 25 m away. The crossbar of the goal is 2.44 m tall. (A) Does the ball go into the goal, hit the crossbar exactly, or go over the top?


If f(x) = (3x-2) / x-5 x>6, find a.) ff(8) b.) the range of f(x) c.) f^-1(x) and state its range.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning