Integrate xsin(x) with respect to x

Apply the rule for integration for parts: Integral of udv = uv - integral of vdu. Choose u to be the term simplified the most when differentiated; in this case choose u to be x as the differential of x w.r.t x is 1. Then dv is sin(x).This means that du = 1 and v = -cos(x) as this is the integral of sin(x)Therefore the integral of xsin(x) = -xcos(x) - integral of (-cos(x))= -xcos(x) + integral of cos(x)= -xcos(x) + sin(x) + cWe must be careful not to forget the constant of integration, c. This arises due to the fact that any constant (i.e. any term with no x dependence) becomes zero when differentiated.

MS
Answered by Michael S. Maths tutor

3264 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For the curve y = 2x^2+4x+5, find the co-ordinates of the stationary point and determine whether it is a minimum or maximum point.


Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.


The line AB has equation 5x+3y+3=0. It is parallel to a line with equation y=mx+7. What is m?


Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning