A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...

Question:A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block and room. Find an equation for H in terms of t and the temperature of the block at time t=24.Answer: dH/dt is proportional to H-T, and this rate of change should be negative as the temperature is decreasing. So dH/dt = -k(H-T), where k is a positive constant. Now, using reciprocal rules for derivatives we havedt/dH = -1/k x 1/(H-T). We can integrate both sides with respect to H to findt = -1/k x ln(H-T) + c, where c is a constant of integration. Now rearranging we getln(H-T) = kc - kt, and raising each side to the power of e we getH-T = ekc x e-kt = Ae-kt, for some constant A=ekc. Substituting in the values in the question we seeH=80, t=0 => A=60, andH=50, t=12 => 30=60e-12k => k =ln(2)/12, soH=20+60e-ln(2)t/12, and so when t=24, H=35.So the temperature of the block at t=24 is 35ºC

CB
Answered by Connie B. Maths tutor

2682 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Three forces, (15i + j) N, (5qi – pj) N and (–3pi – qj) N, where p and q are constants, act on a particle. Given that the particle is in equilibrium, find the value of p and the value of q. (Mechanics 1 June 2017)


Given that y = 4x^5 - 5/(x^2) , x=/=0 , find a)dy/dx b)indefinite integral of y


Integrating cos^2(x)+5sin^2(x)


What is the smallest possible value of the integral ∫(x-a)^2 dx between 0 and 1 as a varies?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences