Find the equation of the tangent to the curve y=x^2+5x+2 at the point where x=5

Step 1: Differentiate the equation of the curve (this gives a function for the gradient of the curve at a specific point)Step 2: Substitute x value into the differential of the curve to obtain gradient (m)Step 3: Obtain y co-ordinate by substituting x into equation of the curveStep 4: Substitute y, x and gradient (m) values into general equation of a line (y=mx+c)Step 5: Work out the value of the y intercept (c)Step 6: Substitute values of gradient (m) and y intercept (c) into general equation of a line (y=mx+c) for the final answer

MR
Answered by Muhammed R. Maths tutor

4369 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line l passes through both A and B. Find a vector equation for the line l.


Use the substitution u=x^2-2 to find the integral of (6x^3+4x)/sqrt( x^2-2)


How to find y-intercept on a graphical calculator


Write √80 in the form c√5, where c is a positive integer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning